ファッション業界向けセマンティクスと コンテキストアウェアハイブリッド推薦システム

Semantics and Context Aware Hybrid Recommender System for Fashion Industry

スタートトゥデイ研究所プロジェクトマネージャー <u>ラジャム・シドハント</u>

Start Today Research Group, Project Manager, Rajam Sidhant (Mr.)

© Start Today Technologies Inc.

Start Today Technologies Inc. 1/2

Start Today Technologies Inc.

The mission of Start Today Technologies Inc. is to operation services and to develop technology that will help improve the entire Start Today Group. Start Today Technologies is a collection of those who are currently involved in technical productions, such as engineers, designers and analysts of the Start Today Group companies.

Start Today Technologies will also be in charge of operating "Start Today Research", which is our research institute. By applying the Strat Today Technologies' expertise in innovation, we aim to achieve Start Today Research's mission of "Scientifically defining and predicting fashion".

WEAR

http://zozo.jp

http://wear.jp

Start Today Technologies Inc. 2/2

ZOZOTOWN

http://zozo.jp

Transaction value

ZOZOTOWN active members

4.59_{million}

Monthly number of shipments

Number of orders per second during special / seasonal sales

Orders by device

 $= 120_{cases}$ $= 80_{\%} = 20_{\%}$

Table of Contents

http://zozo.jp

http://wear.jp

1. Recommendation Systems

- a. Content Based Filtering \rightarrow Item
- b. Collaborative Filtering \rightarrow User / Item Based

2. Hybrid Recommendation Systems

- a. Why is Hybrid Recommendation solution required?
- b. How to implement Hybrid Recommendation solution?

3. Context-Aware Hybrid Recommendation System

- a. Why to consider Context?
- b. What is the difference between Traditional RS and Context-aware RS?
- c. Generic Approach to incorporate Context-Aware solution?

Recommendation -> Content Based Filtering: Item Recommendation 1/3

Recommendation -> Collaborative Filtering: User based Recommendation 2/3

Recommendation -> Collaborative Filtering: Item based Recommendation 3/3

6

- □ Item based Collaborative Filtering Recommendation
 - □ Initially published by Amazon.com in 1998
 - □ Item-Item correlation model uses rating distributions per item and not per user.
 - □ Highly suitable for a business model where total number of users are more than items.
- □ How does Item-based CF Recommendation works,
 - □ Firstly, system builds item similarity matrix between all pairs of items with high correlation
 - □ Secondly, recommend items which are rated highly by others but not yet by given customer.
 - □ It's main purpose is to recommend other category items that customer has not yet tried.
- □ Item based CF matrix does not scale suddenly as compared to User based CF matrix. Hence, performance of Item based CF is better.
- □ Item neighborhood is fairly static and therefore it enables precomputation of matrix which improves online performance.
- Learning Algorithms used to calculate "Similarity Matrix" for Item-based CF are,
 - □ Slop One Algorithm suit (Already implemented in Apache Mahout libraries)
 - Cosine based Similarity
 - Adjusted Cosine Similarity
 - Pearson (Correlation) based Similarity
- □ Challenges in Item-based Collaborative Filtering (Research Problems),
 - Total number of users are less and items are more
 - □ Sparsity of Item based Dataset
 - □ Shilling Attacks → Diversity → Long tail
 - Time complexity can increase exponentially if both users and items are increasing rapidly

Why Hybrid Recommendation -> ZOZOTOWN Big Data

\Box ZOZOTOWN \rightarrow contains Big Data

[> 23million customers] + [> 30million brand product data] + [> 100million purchase history data]

Hence, ZOZO has a rich data of user purchase history, item click rate and impression history, item rating etc.

□ However, ZOZOTOWN has lot of new and newly introduced items.

□ Newly introduced items do not have any history of purchase or click through rate etc.

Likewise, newly registered members also do not have any history of purchase or clicks

□ This leads to the problem of (directly/indirectly)

Cold Start

□ Sparsity of Item based Dataset

 \Box Shilling Attacks \rightarrow Diversity \rightarrow Long tail

Therefore, it is recommended to use the hybrid approach by compositely applying the learning algorithms of Content Based and Collaborative Filtering.

□ In this way, hybrid approach helps to quickly sell the newly added item inventory.

Hybrid Recommendation -> Composite Learning Algorithms 2/2

\Box Hybrid Learning Algorithm \rightarrow approach

- 1. Predict Item Ranking and Rating \rightarrow Using Content Based Learning Algorithm
- 2. Predict Item Ranking and Rating \rightarrow Using Collaborative Filtering Learning Algorithm
- 3. Create Hybrid Prediction \rightarrow Using above two values

\Box Learning Algorithm \rightarrow Learning with respect to

- 1. Item's Frequency / Recency / Monetary Importance
- 2. Item's Purchase History
- 3. Item's Click History: Click Through Rate, Impression Rate
- 4. Item's Ratings
- 5. Item's Sales Importance: Paid sales (Advertisement) / Cross / Up / Down / Next Sale)

\Box Learning Algorithms \rightarrow Main Action Items

- Remove Biased Terms from each Item
- □ Interpolating between an estimate computed from data (LABEL) and a predetermined value
- □ Apply Classification and Regression for learned items
- □ Train separate predictor for each item
- □ K Nearest Neighbor Method
- Compute Item/User Similarity Matrix

Context Aware Recommendation

- Data record is defined as {user, item, rating, context}
- \Box Context \rightarrow Any information used to characterize the situation of an entity (item/user) \rightarrow semantically describes situation

\Box Context \rightarrow can be

- □ Paid Recommendations (Advertisement, Sponsored Events, Banners, Searches, Cross/UP/Down Sale)
- Special Sales Events
- Location (Home / Outdoor / Leisure)
- □ <u>Time (for Time Sale)</u>
- <u>Occasion (Festival / Long Vacations / Social Gatherings)</u>
- Season (spring/summer/autumn/winter)
- □ Weather

 \Box Items viewed/clicked/purchased at SIMILAR CONTEXT \rightarrow tend to have similar meaning \rightarrow high Semantic Relatedness

 \Box Why Context Aware Recommendation System (CARS) ightarrow

- ZOZOTOWN conducts many Special Sales Events
- ZOZOTOWN also conducts Time Sale Events
- □ Fashion Outfits vary depending on above contextual situation
- □ [> 23million customers] + [> 30million brand product data] + [> 100million purchase history data]
- \Box Customer shopping experience and behavior \rightarrow changes with respect to contextual situation
- \Box Context-Aware Recommendation System (CARS) \rightarrow helps us to read the customer's mind.

Traditional RecSys vs Context Aware RecSys

Implementation Design Machine Learning Libraries Used → Apache Mahout Apache Mahout CARSKIT LIBREC Customized Algorithms

Generic Interfaces for Customized Algorithms → Recommender | Iterative Recommender | Context Aware Recommender

<u>Data</u>										
DB Platform	Data Structure	Data Processor								
Redis KVS	Sparse Matrix	Data Access Object								
Flat Files	Dense Matrix	Data Splitter & Preprocessor								
Amazon S3	Sparse Vector	Data Object Serializer								
Google BigQuery	Dense Vector	Data Object Deserializer								
RDBMS	Sparse Tensor									

Library and Customized Algorithms											
Traditiona	ıl – Baseline Algori	thms	Context Aware Recommendation System								
Averages	Collaborative Filtering	Ranking & Scoring	Transformation	Adapt	ion						
UserAverage	UserKNN	BPR	ItemSplitting	Independent	Dependent						
ItemAverage	ItemKNN	SLIM	UserSplitting	TF	CAMF_CU						
ContextAverage	BiasedMF	LRMF	ContextSplitting		CAMF_CI						
					CSLIM_CI						

Apache MahOut

Multi-Dimensional Context Aware Data Set

Ti	aditional Rec Sys		Con	text Aware Rec	Sys – Addition	al Part
User ID	Item ID	Rating	Time	Event	Season	Device
Usr1001	Pant_Jeans_01	1	Weekday	Regular	Spring	PC
Usr2002	Shirt_Denim_02	5	Weekday	ZOZO-Day	Autumn	Smart Phone (SP)
Usr3003	Skirt_Formal_01	3	Weekend	ZOZO-Day	Summer	PC
Usr4004	MenBelt_06	2	Weekend	ZOZO-Day	Spring	SP
usr5005	Shirt_Denim_04	4	Weekday	Regular	Summer	SP

□ Types or Dimensions of Context → [Time] , [Event] , [Season] , [Device]

□ Condition of Context → [Weekday / Weekend], [Regular / ZOZO-Day], [Spring / Autumn / Summer], [PC / SP]

 $\Box \underline{Situation of Context} \rightarrow [Weekday + Regular + Spring + SP], [Weekend + ZOZO-Day + Summer + PC]$

Rating = (#clicks + #bookmarks + #purchase_history)

(Range of Rating is between 1 to 5)

<u>Context Aware Algorithm → Pre-Requisite</u>

□ Two main pre-requisite for Context Aware Algorithm as following

 \Box Context Filtering \rightarrow When to consider context data for Top-N Recommendation

 $\hfill\square$ Context Modelling $\hfill \rightarrow$ How to store context data

□ CARS algorithm can be built by using any three of following methods:

 \Box Machine Learning on Contextualized Data \rightarrow fairness in Training and Testing Matrix \rightarrow <u>k-Fold Cross Validation</u>

<u>Context Modelling → Differential Approach</u>

Following three main steps:

□ <u>Context Matching</u> → Match with only profiles given in {Weekday, ZOZO-Day, Autumn, SP}

 \Box <u>Context Relaxation</u> \rightarrow Use a subset of context type or dimensions to match

- □ <u>Context Weighting</u> → Scan through all profiles, but weighted by context similarity
- □ Applying and Tweaking the Following Algorithms
 - □ User K-Nearest Neighbor (UserKNN) (Euclidean Distance)
 - □ Item K-Nearest Neighbor (ItemKNN)
 - □ Matrix Factorization

Traditional Rec Sys

Context Aware Rec Sys – Additional Part

nting	Time	Event	Season	Device
1	Weekday	Regular	Spring	PC
5	Weekday	ZOZO-Day	Autumn	Smart Phone (SP)
3	Weekend	ZOZO-Day	Summer	PC
2	Weekend	ZOZO-Day	Spring	SP
4	Weekday	Regular	Summer	SP
	nting 1 1 1 5 3 3 2 4 1	tingTime1Veekday5Veekday3Veekday2Veekend4Veekday	tingTimeEvent1WeekdayRegular5WeekdayZOZO-Day3WeekendZOZO-Day2WeekendZOZO-Day4WeekdayRegular	tingTimeEventSeason1WeekdayRegularSpring5WeekdayZOZO-DayAutumn3WeekendZOZO-DaySummer2WeekendZOZO-DaySpring4WeekdayRegularSummer

<u>Context Modelling → Context Weighting</u>

Other Similarity Matching and Matrix Algorithms are as following

- □ Pearson's Correlation Similarity (PCC)
- Constrained Perason's Correlation (CPC)
- Cosine Similarity (COS)
- □ Mean Squared Differences (MSD)

<u>Solution → Jaccard Coefficient (Tanimoto Coefficient)</u>

```
def tanimoto (set_a, set_b) :
         intersection = set_a.intersection (set_b)
         len_a = len (set_a)
         len_b = len (set_b)
         len_i = len (intersection)
         return float (len_i) / (len_a + len_b - len_i)
[Output value or score ranges between 0.0 and 1.0]
```


Solution → Euclidean Distance (correlation)

def euclidean (list_a, list_b) : dist = 0.0*for I in range (len (list_a)):* $rate_a = list_a[i]$ $rate_b = list_b[i]$ $dist = dist + pow((rate_a - rate_b), 2)$ return sqrt (dist) [Output value or score ranges between 0.0 and 1.0]

<u>Context Modelling → Data Structure Storage</u>

🖵 Cont	Context Data is preprocessed and converted into Context-wised binary information														
userid	itemid	ratin	g Time	Event	Season	Device									
usr1001	Pant_Jeans_01	5	NA	NA	NA	SP									
usr1001	Pant_Jeans_01	3	Weeken	d ZOZO_Day	Summer	SP									
usr1001	Pant_Jeans_01	4	Weeken	d ZOZO_Day	Autumn	SP									
user	item	rating	time:na tin	ne:weekday	time:weeken	d event:na	event:regular	event:zozo_day	season:autumn	season:na	season:spring	season:summer	device:na	device:pc	device:sp
usr1001	pant_jeans_01	5	1	0	0	1	0	0	0	1	0	0	0	0	1
usr1001	pant_jeans_01	3	0	0	1	0	0	1	0	0	0	1	0	0	1
usr1001	pant_jeans_01	4	0	0	1	0	0	1	1	0	0	0	0	0	1

or v)	usr1001	pant_jeans_01	5	1 0	(0	1	0	0	0	1	0	0	0	0	1			
	usr1001	pant_jeans_01	3	0 0	:	1	0	0	1	0	0	0	1	0	0	1			
	usr1001	pant_jeans_01	user	item	rating ti	me:na tim	e:weekday	y time:weeke	end event:na e	event:regular o	event:zozo_da	iy season:autum	nn season:na	season:sprin	ng season:sur	nmer devic	e:na devic	e:pc de	vice
	Scalar	Vector	usr1001	pant_jeans_01	5	1	0	0	1	0	0	0	1	0	0	C) C		1
	Scalal	(Column)	usr1001	pant_jeans_01	3	0	0	1	0	0	1	0	0	0	1	C) C		1
			usr1001	pant jeans 01	4	0	0	1	0	0	1	1	0	0	0	C) (1

ML on Contextualized Data -> k-Fold Cross Validation

 \Box Cross-Validation \rightarrow a technique to evaluate ML model by,

- training it on subsets of available input data
- evaluating it on complementary subset of data.

 \Box k-Fold Cross Validation \rightarrow [1] reduces bias as most of data is used for fitting \rightarrow [2] reduces variance as most of the data is used in validation set.

 \Box K = 5 or K = 10 \rightarrow works best as per certain empirical evidences.

Context Modelling Result -> k-Fold Intermediate Recommendations

□ K-Fold Intermediate Recommendation Result

User ID	Context Condition	Recommendation 1	Recommendation 2	Recommendation 3	Recommendation 4
usr1001	device:sp;event:na;season:na;time:na:	(onepeace_13 5.265406)	(womenbelt_03 5.239005)	(t_shirt_formal_13 4.4583693)	(menbelt_04 4.3078666)
usr1001	device:sp;event:zozo_day;season:summer;time:weekend:	onepeace_13 3.9239478)	(womenbelt_03 3.8975468)	(womenbelt_06 3.6858723)	(pant_jeans_01 3.5560606)
usr1002	device:sp;event:na;season:na;time:na:	half_shirt_formal_02 4.264601)	(menshoes_03 4.2473464)	(t_shirt_formal_04 4.141822)	(onepeace_01 4.0362325)
usr1002	device:sp;event:regular;season:summer;time:weekday:	pant_formal_01 4.9841743)	(half_shirt_formal_02 4.734595)	(menshoes_03 4.71734)	(t_shirt_formal_04 4.6118155)
usr1003	device:sp;event:na;season:na;time:na:	pant_jeans_12	(socks_04 3.5021193)	(menbelt_06 3.2302444)	(menshoes_02 3.2236366)
usr1003	device:sp;event:zozo_day;season:spring;time:weekday:	pant_jeans_12 2.2311978)	(socks_04 2.1887627)	(menbelt_06 1.9168875)	(menshoes_02 1.9102799)
usr1004	device:sp;event:na;season:na;time:na:	socks_04 6.1128426)	(menbelt_04 6.0229573)	(shirt_formal_03 5.7797804)	(womenbelt_03 5.5392733)
usr1004	device:sp;event:zozo_day;season:autumn;time:weekday:	socks_04 4.757492)	(menbelt_04 4.667607)	(shirt_formal_03 4.42443)	(pant_jeans_01 4.23796)
usr1005	device:sp;event:na;season:na;time:na:	(t_shirt_formal_02 5.1630282)	(top_formal_13 5.072566)	(half_shirt_formal_06 4.9986386)	(pant_formal_01 4.6567273)
usr1005	device:sp;event:zozo_day;season:summer;time:weekend;	t_shirt_formal_02 4.7874174)	(top_formal_13 4.696955)	(half_shirt_formal_06 4.6230273)	(pant_formal_01 4.2811165)

The reverse recommendation can also be done based on the Context Condition e.g.,

device : sp; event : zozo_day; season : summer; time : weekend

This is very useful for non-member users whose purchase history is not available.

<u>References</u>

- 1. F. Ricci, L. Rokach, B. Shapira, "*Recommender Systems Handbook*", Springer, Second Edition, 2015.
- 2. X. Amatriain, "*Mining Large Streams of User Data for Personalized Recommendations*", SIGKDD Explorations, Volume 14, Issue 2, pages 37 48, December 2012.
- 3. B. Lamche, Y. Rodl, C. Hauptmann, W. Worndl, "*Context-Aware Recommendations for Mobile Shopping*", ACM RecSys'15, Workshop on Location-Aware Recommendations (LocalRec'15), Vienna, Austria, Sept. 19, 2015.
- K. Verbert, N. Manouselis, X. Ochoa, M. Wolpers, H. Drachsler, et. all, "Context-Aware Recommender Systems for Learning: A Survey and Future Challenges", IEEE Transactions on Learning Technologies, Vol. 5, No. 4, pages 318-335, Oct-Dec 2012.
- 5. Y. Zheng, "*Tutorial: Context in Recommender Systems*", The 31st ACM Symposium on Applied Computing, Pisa, Italy, April 4th 2016.
- 6. P. Lops, "Semantics-aware Content-based Recommender Systems: the Big Picture", Workshop on New Trends in Content-based Recommender Systems, CBRecSys 2014 Foster City, CA, US, October 6th 2014.
- K. Nishida, K. Sadamitsu, R. Higashinaka, Y. Matsuo, "Understanding the Semantic Structures of Tables with a Hybrid Deep Neural Network Architecture", 31st AAAI Conference on Artificial Intelligence AAAI-17, San Francisco, US, pages 168-174, February 2017.
- 8. S. Rendle, Z. Ganter, et all, "Fast Context-aware Recommendations with Factorization Machines", ACM SIGIR'11, Beijing, China, July 24-28, 2011.

Thanks for your kind attention!!!

Project Manager Starttoday Research

Sidhant Rajam

sidhant.rajam@starttoday.jp

Start Today Technologies Inc.

Head office : Aoyama Oval Building 3F, 5-52-2 Jingumae, Shibuya-ku, Tokyo 150-0001, Japan Tel : +81-3-3407-8811 / Fax : +81-3-5774-8844

Makuhari office : WBG West 16F, 2-6-1 Nakase, Mihama-ku, Chiba-shi, Chiba 261-7116, Japan Tel : +81-43-213-7474 / Fax : +81-43-213-5175

Any Questions / Suggestions / Feedback ??

sidhant.rajam@starttoday.jp

(LinkedIN → https://www.linkedin.com/in/sidhantrajam/)

